Ai júp mình với, mai mình thi rồi, không được gải là thầy hiệu trưởng xén cổ mình đi đấy!!
Ai júp mình với, mai mình thi rồi, không được gải là thầy hiệu trưởng xén cổ mình đi đấy!!
Cho số P có dạng P = 3a01b6c29. Tìm các chữ số a,b,c biết rằng a3 + b3 + c3 = 349.
Casio
Cho số P có dạng P = 3a01b6c29. Tìm các chữ số a,b,c biết rằng a3 + b3 + c3 = 349.
Casio
Bài 2. (2 điểm)
1. Chứng minh rằng:
(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
2. Tìm 3 số tự nhiên liên tiếp, biết rằng tổng các tích của từng cặp 2 số trong 3 số ấy
bằng 74.
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
Cho a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc.
Cho a + b + c = 0. Chứng minh rằng a 3 + b 3 + c 3 = 3abc.
Cho a+b+c+d=0. Chứng minh rằng :
a3+b3+c3+d3=3(b+c)(ad-bc)
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0