cho số nguyên tố p thỏa mãn 1/a+1/b=1/p (a;b E N*) tìm số nguyên tố p thỏa mãn để a hoặc b là số chính phương
giải chi tiết mình sẽ tick cho thật nhìu
1, Tìm n thỏa mãn n+1945 và n+2004 là số chính phương
2, Cho a,b thuộc N* thỏa mãn A=a2+b2 nguyên. Chứng minh A là số chính phương
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
1 Tìm các số x1,x2,..,x8 thuộc Z thỏa mãn
\(x1^4+x2^4+x3^4+....+x8^4=2014\)
2 cho các số nguyên a,b,c thỏa mãn: ab+1=c.(a-b+c)
tính giá trị biểu thức: \(A=\frac{2017a-b}{2017a+b}+\frac{2017b-a}{2017b+a}\)
3 tìm n thuộc Z để 13n+3 là số chính phương
giúp t với :((
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
Bài 1: cho a b c d là các số nguyên dương chẵn thỏa mãn
a+b=c+d và ab-cd=-4.cmr abc chia hết cho 48
bài 2 : cmr ko tồn tại 5 số nguyên dương phân biệt sao cho tổng của 3 số bát kỳ là 1 số nguyên tố
bài 3: tim a thuộc Z+ để 2016^2017 + 2018^2019 chia hết cho (a^2 +a)(2+a)`
bài 4 tìm n thuộc n sao cho dãy n+9;2n+9;3n+9:..... ko có số chính phương.
(giải nhanh giúp mình trong tối nay nha mai mình đi học rồi rồi mình tích cho :) anigato)
Câu 1:Tìm n thuộc N,biết n^2+2010 là số chính phương.
Câu 2: Tìm số chính phương có 4 chữ số, biết chữ số tận cùng là số nguyên tố, tổng các chữ số là số chính
Câu 3: tìm số có 4 cs biết số đò là số chính phương và lập phương của 1 số.
Câu 4Tìm a,b,c thuộc P,biết a^b+b^a=c.
Bài 1: Tìm n là số tự nhiên để 2^n + 19 là số chíng phương
Bài 2:cho a,b số tụ nhiên khác 0 thỏa mãn : 2a^2+a=3b^2 + b.CMR:a-b và 2a+2b+1 là số chính phương
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số