1.Tìm số chính phương có 4 chữ số mà 3 chữ số cuối cùng giống nhau
2.Có tồn tại hay ko các số chính phương a và b sao cho a-b=2014
3.Có tồn tại hay ko hai số 2^n-1 và 2^n+1(n>2)đồng thời là các số nguyên tố
4.CMR:Số A có dạng 3^n+4 ko thể là số chính phương
Ai làm đc mình tick cho
Cho A là một số nguyên dương thỏa gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. Chứng minh rằng không tồn tại hai số nguyên dương a và n sao cho A=an
Một số tự nhiên chia hết cho 4 có ba chữ số đều chẵn, khác nhau và khác 0. Chứng minh rằng tồn tại cách dổi vị trí các chữ số để được một số chia hết cho 4. Giải chi tiết không làm tắt!
Làm tắt => Báo cáo
Một tập hợp các số nguyên dương được gọi là tập hương nếu tập hợp đó có ít nhất 2 phần tử và mỗi phần tử của nó đều có ước nguyên tố chung với ít nhất một trong các phần tử còn lại . Đặt P(n)=n2+n+1. Hãy tìm số nguyên dương b nhỏ nhất sao cho tồn tại số không âm a để tập hợp {P(a+1);P(a+2);...;P(a+b)} là tập hương.
Chứng minh rằng tồn tại một số tự nhiên có 2 chữ số 0,7 có tổng các chữ số chia hết cho 2002.
Dirichlet ấy. Giái giúp nhé!!!!!!!!!!!!
Cho a,b là 2 số nguyên dương không nhỏ hơn 2 và nguyên tố cùng nhau. Nếu m,n là 2 số nguyên dương thỏa mãn: (a^n + b^m) chia hết cho
(a^m + b^n) thì ta có m chia hết cho n.
Trình bày chi tiết và giải nhanh lên nhé
Gỉa sử A là 1 số tự nhiên cho trước:
a, Tìm 2 chữ số tận cùng của a để bình phương của A có số tận cùng là 89 .
b, T ìm số nhỏ nhất A mà bình phương của nó là một số bắt đầu là số 19 và kết thúc là số 89 .
c, Tìm tất cả các số tự nhiên n sao cho n là 1 số 12 chữ số dạng n2 bàng số 2525xxxxxx89
Cho A là một số nguyên dương gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. CMR không tồn tại hai số nguyên dương a,n lớn hơn 1 thỏa mãn A=\(a^n\)
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50