Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
abc \(⋮\)27
\(\Rightarrow\)abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)27 . 37a + bca \(⋮\)27
Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27
SKT_NTT bạn thân làm quá tắt
MK giải rõ hơn nè :
Ta có : abc chia hết cho 27
=> abc x 10 chia hết cho 27
Hay abc0 chia hết cho 27
<=> 1000a + bc0 chia hết cho 27
<=> 999a + bc0 + a chia hết cho 27
<=> 27.37.a + bca chia hết cho 27
Mà 27.37.a chia hết cho 27
Nên bca chia hết cho 27