Cho số A=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
Cho \(\frac{2010\cdot c-2011\cdot b}{2009}=\frac{2011\cdot a-2009\cdot c}{2010}=\frac{2009\cdot b-2010\cdot c}{2011}\)
C/m \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Cho \(\frac{2010c-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
CMR \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Cho : \(\frac{2010a-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
Chứng minh rằng : \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Cho các số a,b,c,d khác 0 . Tính
T=x^2011+y^2011+z^2011+t^2011
Biết \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho các số a,b,c,d khác 0 .Tính
T=\(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn :\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho các số a,b,c,d khác 0. Tính :
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn : \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
a) Cho các số a,b,c,d khác 0. Tính T = x2011 + y2011 + z2011 + t2011
Biết x, y, z, t thoả mãn: \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Tìm số hữu tỉ x biết:
a) \(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b) \(\frac{x-2011}{2010}+\frac{x-2011}{2011}+\frac{x-2011}{2012}=\frac{x-2011}{2013}+\frac{x-2011}{2014}\)