Giả sử \(S_n\)là số nguyên
Ta có:
\(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(S_n=0+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\) (\(\frac{1^2-1}{1}=\frac{1-1}{1}=\frac{0}{1}=0\))
\(S_n=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\) (Số 0 bỏ đi)
\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) (1 + 1 +... + 1 có n-2 + 1 = n - 1 số 1)
Mà 1 + 1 + ... + 1 ( có n-1 số 1) luôn là số nguyên để \(S_n\)là số nguyên thì:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\inℤ\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
Ta thấy rằng:
\(\frac{1}{2.3}=\frac{1}{6}< \frac{1}{2^2}=\frac{1}{4}< \frac{1}{2}=\frac{1}{1.2}\)
\(\frac{1}{3.4}=\frac{1}{12}< \frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)
......
\(\frac{1}{n.\left(n+1\right)}< \frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+... +\frac{1}{n}-\frac{1}{n+1}\) \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2n+2}=\frac{n-1}{2n+2}>0\) (Do n > 1) \(=1-\frac{1}{n}< 1\)
=> 0 < \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)<1
=> Biểu thức đó không phải là số nguyên
=> Giả sử sai
=> Sn không là số nguyên với mọi n thuộc N và n > 1