Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
\(C=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot....\cdot\left(1-\frac{2}{99\cdot100}\right)\)
A = \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot.....\cdot\left(1+\frac{1}{2011\cdot2013}\right)\)
Chứng minh:
a, \(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
b, \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{5}{4}\)
tính S1
\(S_1=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}\)\(+\frac{1}{2\cdot3\cdot4\cdot5\cdot6}+.................+\frac{1}{\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(2\right)}\)
Tính :
\(\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)\left(1-\frac{2}{4\cdot5}\right)\cdot...\cdot\left(1-\frac{2}{99\cdot100}\right)\)
Cần lời giải đầy đủ
Mình sẽ tick
tập hợp các số nguyên x thỏa mãn
\(x\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\right)<1\frac{6}{7}\)
Viết các biểu thức số sau dưới dạng an(a\(\in\)Q,n\(\in\)N)
a,\(9\cdot3^3\cdot\frac{1}{81}\cdot3^2\)
b,\(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)\)
c,\(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2\)
d,\(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2\)
Tính \(\frac{B}{A}\)biết
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}+...+\frac{1}{2008\cdot2009\cdot2010}\)