Cho Sn = \(\left(1+\frac{1}{2}\right)+\left(2+\frac{2}{2^2}\right)+\left(3+\frac{3}{2^3}\right)+...+\left(n+\frac{n}{2^n}\right)\). Tìm n để Sn = 4951
Cho Sn= \(\frac{1^1-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\) (Với \(n\in N\) và n>1)
CMR : Sn k là số nguyên
Câu 1: Tìm số dư của phép chia : \(3^{n+2}-2^{n+3}+3^n-2^n\) (với n là số nguyên dương) cho 10.
Câu 2: Tìm số dư của phép chia: \(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\) (với n là số nguyên dương) cho 6.
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương
Tìm số nguyên dương n nhỏ nhất để các phân số sau đều là các phân số tối giản
1/n+3, 2/n+4,..., p-2/n+p, p-1/n+p+1 (p là số nguyên tố lẻ cho trước)
tìm tất cả các số nguyên dương n sao cho n được viết dưới dạng a^2 +b^2, trong đó a là ước nguyên dương nhỏ nhất của n (a khác 1) và b là một ước nguyên dương nào đó của n
Gọi Sn là số cách tô màu n đỉnh của n-giác bằng 3 màu sao cho 2 đỉnh được nối với nhau bằng 1 cạnh đa giác thì khác màu nhau. Hãy tìm công thức truy hồi tính Sn
Cho A=n3-n2+3n-3 với n là số nguyên dương. Tìm n để A là số nguyên tố