Làm tiếp nha:(bạn tự CM công thức)
\(\cot^2\alpha=\frac{1}{\sin^2\alpha}-1=\frac{9}{4}-1=\frac{5}{4}\Rightarrow\tan^2\alpha=\frac{4}{5}\Rightarrow B=\frac{4}{5}-2.\frac{5}{4}=\frac{-17}{10}\)
Làm tiếp nha:(bạn tự CM công thức)
\(\cot^2\alpha=\frac{1}{\sin^2\alpha}-1=\frac{9}{4}-1=\frac{5}{4}\Rightarrow\tan^2\alpha=\frac{4}{5}\Rightarrow B=\frac{4}{5}-2.\frac{5}{4}=\frac{-17}{10}\)
Cho 0<a<90.Tính các biểu thức sau
a)A=\(\frac{cot\alpha+tan\alpha}{cot\alpha-tan\alpha}\)
b)B=\(\frac{sin^2+2sina.cosa-2cos^2a}{2sin^2a-3sina.cosa+4cos^2a}\)
cho tan a = 3 tính giá trị các biểu thức sau
a) \(A=\frac{\sin a.\cos a}{\sin^2a-\cos^2a}\)
b)
a) cho sin a = \(\frac{2}{3}\) . Tính giá trị của biểu thức P = tan2 a - 2 cot2 a
b) cho sin a.cos a =\(\frac{2\sqrt{2}}{9}\). tính giá trị đúng của biểu thức M = \(\frac{1}{\tan a+\cot a}\)
1) Chứng minh :
a) \(\frac{1+\cot a}{1-\cot a}=\frac{\tan a+1}{\tan a-1}\)
b)\(\frac{\sin^2a-\cos^2a+\cos^4a}{\cos^2a-\sin^2a+sin^2a}=\tan^4a\)
2) Cho hình thang ABCD (AB//CD), góc C = 300 ; góc D = 600 ; AB = 1 ; CD = 5 . Tính diện tích hình thang ABCD
1)tính giá trị biểu thức:
p=tan 37 °+sin^2 28 °-3tan 52 °/cot 28 °+sin^2 62 °-cot 53 °
2) tìm góc nhọn a(alpha) biết sin a = cos a.
3) Cho biết x=3. Tính giá trị của các biểu thức sau :
a/ A=32018.cot2017x
b/ B= sin2x + 2 sin x . cos x - 5 cos2x
c/ D=1-(sin x + cos x)2 / cos2x
(mn ơi ai biết giúp mjh vs ạ) 😭
Cho gác nhọn a
a) Cho biết sina=\(\frac{\sqrt{3}}{2}\).Không tìm góc a, hãy tính cosa, tana
b) Đơn giản biểu thức: \(Q=sin^2a+cot^2a.sin^2a\)
a) Không dùng máy tính. Hãy tính: \(3\sin20-3\cos70+\frac{4\tan70}{\cot20}\)
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào số đo của góc nhọn a
\(2\tan^2a-\frac{1}{1+\sin a}-\frac{1}{1-\sin a}\)
Câu 50**: Cho góc nhọn
tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Tính giá trị của biểu thức: C= \(5\cos^2a+2\sin^2a.Biết\sin a=\frac{2}{3}\)