Chứng minh rằng:
S = \(1+\frac{1}{2^2^{ }}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)không phải là số tự nhiên
S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2012!}\)
Chứng minh S <2
Cho S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\) Chứng tỏ S < 1
chứng tỏ rằng : S= \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\) không phải là số tự nhiên
Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A>1
Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Bài 7:
C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)
Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Chứng minh rằng : S > 1
cho S =\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)
chứng minh rằng S lớn hơn 2
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
Chứng tỏ:\(S=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}< 3\)