Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mathonline

cho S=5+52+53+...+52004. chứng minh Schia hết cho 126 và chia hết cho 65.

thank

 

Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53) 
= 5. 126 + 52.126 + 53.126
( 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.
0,5

S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.
0,5

Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
( 5 + 52 + 53 + 54 chia hết cho 130 .
0,5

S = 5 + 52 + 53 + 54 + 54 (5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.
0,5

Có S chia hết cho 130 nên chia hết cho 65.
0,5


tích nha

Đinh Đức Hùng
3 tháng 4 2016 lúc 14:45

Có S = ( 5 + 53 ) + ( 52 + 54 ) + .... + ( 52002 + 52004 )

        = 1.( 5 + 53 ) + 5.( 5 + 53 ) + ... + 52001 ( 5 + 53 )

        = 1 ( 5 + 125 ) + 5 ( 5 + 125 ) + ... + 52001 ( 5 + 125 )

        = 1 . 130 + 5 . 130 + ... + 52001 . 130

        = 130 ( 1 + 5 + ... + 52001 )

Vì 130 chia hết cho 65 => S chia hết cho 65


Các câu hỏi tương tự
Tte
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
Tạ Lương Minh Hoàng
Xem chi tiết
Thám Tử Lừng Danh Conan
Xem chi tiết
Nguyễn Vũ thành
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
masrur
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
song ngư xấu xí
Xem chi tiết