Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
(1/1.2.3+1/2.3.4+1/3.4.5+...+1/9.10.11)x+1/2=x-331/2
Tính S=1.2.3+2.3.4+3.4.5+...+97.98.99
Cho N = 1.2.3 + 2.3.4+...+n(n+1)(n+2) . CMR : 4N+1 là số chính phương
chứng tỏ
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 = 4949/19800
Cho S=\(\dfrac{5}{1.2.3}+\dfrac{8}{2.3.4}+\dfrac{11}{3.4.5}+...+\dfrac{6068}{2022.2023.2024}\)
So sánh S với 2
Cho S = 1x2x3 + 2x3x4 + 3x4x5 + ........+ k(k+1)(k+2). Chứng minh: 4S + 1 là số chính phương
Tính giá trị của biểu thức sau :
S = 1 / 1.2.3 + 1 / 2.3.4 + 1 / 3.4.5 +................+ 1 / 99 . 100 .101
Chứng minh rằng
\(\frac{5}{1.2.3}+\frac{8}{2.3.4}+\frac{11}{3.4.5}+...+\frac{6038}{2012.2013.2014}<2\)