Ta có: \(\frac{1}{51}>\frac{1}{75};\frac{1}{52}>\frac{1}{75};\ldots;\frac{1}{74}>\frac{1}{75};\frac{1}{75}=\frac{1}{75}\)
Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (1)
Ta có: \(\frac{1}{76}>\frac{1}{100};\frac{1}{77}>\frac{1}{100};\ldots;\frac{1}{99}>\frac{1}{100};\frac{1}{100}=\frac{1}{100}\)
Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\cdots+\frac{1}{100}=\frac{25}{100}=\frac14\) (2)
Từ (1),(2) ta có: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac13+\frac14\)
=>\(S>\frac13+\frac14=\frac{7}{12}\) (3)
Ta có: \(\frac{1}{51}<\frac{1}{50};\frac{1}{52}<\frac{1}{50};\ldots;\frac{1}{75}<\frac{1}{50}\)
Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}<\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{25}{50}=\frac12\) (4)
Ta có: \(\frac{1}{76}<\frac{1}{75};\frac{1}{77}<\frac{1}{75};\ldots;\frac{1}{100}<\frac{1}{75}\)
Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (5)
Từ (4),(5) suy ra \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac12+\frac13\)
=>\(S<\frac56\) (6)
Từ (3),(6) suy ra 7/12<S<5/6