Ta có: \(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
.... .... ..........
\(\frac{1}{10^2}>\frac{1}{10.11}\)
\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(đpcm\right)\)
Cảm ơn
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(\Leftrightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
\(\Leftrightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Leftrightarrow S>\frac{1}{2}-\frac{1}{11}\)
\(\Leftrightarrow S>\frac{11}{22}-\frac{2}{22}\)
\(\Leftrightarrow S>\frac{9}{22}\left(đpcm\right)\)
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)