a/
\(3S=3+3^2+3^3+3^4+...+3^{120}\)
\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)
b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13
c/
\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40