Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đỗ Bảo Linh
Cho P=(x+y+z)^3-(x^3+y^3+z^3) Cmr với mọi x,y,z là số nguyên;cùng tính chẵn lẻ thì P chia hết cho 24 (Áp dụng hằng đẳng thức)
Mai Anh Nguyen
8 tháng 6 2021 lúc 15:45

Có (x+y+z)3−(x3+y3+z3)(x+y+z)3−(x3+y3+z3)

=[(x+y)+z]3−(x3−y3−z3)=[(x+y)+z]3−(x3−y3−z3)

=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)

=3xy(x+y)+3(x+y)2z+3(x+y)z2=3xy(x+y)+3(x+y)2z+3(x+y)z2

=3(x+y)[xy+(x+y)z+z2]=3(x+y)[xy+(x+y)z+z2]

=3(x+y)[x(y+z)+z(y+z)]=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)=3(x+y)(y+z)(x+z)

Do x,y,z nguyên và cùng tính chẵn lẻ ⇒(x+y);(y+z);(z+x)⇒(x+y);(y+z);(z+x) đều là ba số chẵn

⇒(x+y)(y+z)(z+x)⋮8⇒(x+y)(y+z)(z+x)⋮8

mà (3;8)=1 và 3.8=24

⇒3(x+y)(y+z)(z+x)⋮24⇒3(x+y)(y+z)(z+x)⋮24 (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
ѕнєу
Xem chi tiết
Trần Khuyên
Xem chi tiết
Vương Ngọc Uyển
Xem chi tiết
Phan Anh
Xem chi tiết
Hải Băng
Xem chi tiết
Vũ Đình Sơn
Xem chi tiết
Thái Phương
Xem chi tiết
Seu Vuon
Xem chi tiết
Bùi Nguyễn Đức Huy
Xem chi tiết