Cho phương trình: \(x^4-16x^2+32=0\)(với \(x\in R\))
CMR: \(x=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của pt trên ?
Cho Xo=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
CMR: Xo là nghiệm phương trình \(x^4-16x^2+32=0\)
Chứng minh rằng số \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của phương trình \(x^4-16x^2+32=0\)
chứng minh rằng x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là 1 nghiệm của phương trình\(x^4-16x^2+32=0\)
Chứng minh rằng số \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là một nghiệm của phương trình \(x^4-16x^2+32=0\)
CMR: \(x^4-16.x^2+32=0\)
có 1 nghiệm là:
\(x=\sqrt{6-3.\sqrt{2+\sqrt{3}}}+\sqrt{2+\sqrt{2+\sqrt{3}}}\)
b1:tìm nghiệm nguyên của phương trình sau: \(5x^2+2y^2+10x+4y=6\)
b2: cho số thực A=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
có là 1 nghiệm của pt \(\left(x^2-8\right)=32\)ko
Chứng minh \(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là nghiệm phương trình\(x^4-16x^2+32=0\)
cho pt : \(x^2+\sqrt{3}x-\sqrt{5}=0\)
c/m pt có 2 nghiệm \(x_1\)và \(x_2\) và tính \(\sqrt{x_1}+\sqrt{x_2}\)