a) bản chất là đặc biệt của (b)
=> làm (b)
\(x^3-3x^2+4mx+3x-8m-2=0\)(1)
\(\left(x^3-3x^2+3x-2\right)+\left(4x-8\right)m=0\)
\(4m\left(x-2\right)=1-\left(x-1\right)^3=\left(x-2\right)\left[\left(x-1\right)^2+\left(x-1\right)+1\right]=\left(x-2\right)\left[x^2-x+1\right]\)
Với x=2 \(\Rightarrow4m.0=0.\left(x^2-x+1\right)\)=> x =2 là nghiệm với mọi giá trị của m
Với x khác 2
chia hai vế cho x- 2 khác 0
\(4m=\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{16m+3}{4}\)(2)
để 1 có 3 nghiệm pb => (2) phải có 2 nghiệm khác 2
và VP>0
\(f\left(2\right)=4-2-4m+1\ne0\Rightarrow m\ne\dfrac{3}{4}\)(a)
\(VP>0\Rightarrow m>\dfrac{3}{16}\)(b)
từ (a) và (b) Kết luận
\(\left\{{}\begin{matrix}m\ne\dfrac{3}{4}\\m>\dfrac{3}{16}\end{matrix}\right.\)
Thì (1) có 3 nghiệm phân biệt
nhẩm x =2 là 1 nghiệm. thay vào ra pt bậc 2 rồi viete