\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)
Vậy pt luôn có 2 nghiệm phân biệt.
Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)