a/ \(\Delta=\left(2m+3\right)^2-4\left(m-5\right)=4m^2+8m+4+25\)
\(=4\left(m+1\right)^2+25>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2m+3}{m-5}\\\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_1x_2}=\frac{1}{m-5}\end{matrix}\right.\) với \(m\ne5\)
Theo định lý Viet đảo, \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm của:
\(x^2-\frac{2m+3}{m-5}x+\frac{1}{m-5}=0\Leftrightarrow\left(m-5\right)x^2-\left(2m+3\right)x+1=0\)