\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\frac{2m+1+3}{2}=m+2\\x_2=\frac{2m+1-3}{2}=m-1\end{matrix}\right.\)
Để phương trình có 2 nghiệm âm phân biệt:
\(\Rightarrow x_1< 0\Rightarrow m+2< 0\Rightarrow m< -2\)
Khi đó:
\(A=x_1\left(x_2+5\right)=\left(m+2\right)\left(m-1+5\right)=\left(m+2\right)\left(m+4\right)\)
\(A=m^2+6m+8=\left(m+3\right)^2-1\ge-1\)
\(\Rightarrow A_{min}=-1\) khi \(m+3=0\Leftrightarrow m=-3< -2\) (thỏa mãn)