Do x>1 => x-1>0
Ta có: \(P=\frac{x^2}{x-1}\)
\(\Leftrightarrow P=\frac{x^2-1+1}{x-1}\)
\(\Leftrightarrow P=x+1+\frac{1}{x-1}\)
\(\Leftrightarrow P=\left[\left(x-1\right)+\frac{1}{x-1}\right]+2\)
\(\Rightarrow P\ge2\sqrt{\frac{x-1}{x-1}}+2=2+2=4\)
Dấu "=" xảy ra khi \(x-1=\frac{1}{x-1}\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(vì x-1>0)
Vậy minP = 4 khi x = 2