Để M = n − 1 n − 2 là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.
Gọi Ư C L N ( n - 1 , n - 2 ) = d ⇒ n – 1 ⋮ d ; n – 2 ⋮ d
⇒ ( n – 1 ) – ( n – 2 ) ⋮ d ⇒ 1 ⋮ d ⇒ d = 1 với mọi n. Vậy với mọi n thuộc Z thì M = n − 1 n − 2 là phân số tối giản.
Để M = n − 1 n − 2 là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.
Gọi Ư C L N ( n - 1 , n - 2 ) = d ⇒ n – 1 ⋮ d ; n – 2 ⋮ d
⇒ ( n – 1 ) – ( n – 2 ) ⋮ d ⇒ 1 ⋮ d ⇒ d = 1 với mọi n. Vậy với mọi n thuộc Z thì M = n − 1 n − 2 là phân số tối giản.
Cho phân số m = n-1/ n-2 (n thuộc Z,n#2).Tìm n để M là phân số tối giản
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
Cho phân số A=n+1/n+3(n€Z, n khác 3)
Tìm n để A là phân số tối giản
Chứng tỏ 12n+1/30n+2 là phấn số tối giản
Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
Cho phân số A=n-1/n-2 (n thuộc Z,n không bằng 2). tìm n để a là phân số tối giản
Cho A=\(\dfrac{n-1}{n-2}\)( n∈Z;n≠2). Tìm n để A là phân số tối giản
Cho phân số M = n + 1 n ( n ∈ Z ; n ≠ 0 ) . Tìm n để A là phân số tối giản.