Ta có:\(A=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=1+\frac{7}{n-2}\)
\(\Rightarrow7⋮\left(n-2\right)\) hay \(n-2\inƯ\left(7\right)\)
Ư(7) là:[1,-1,7,-7]
Do đó ta được bảng sau:
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Vậy để A nguyên thì n=-5;1;3;9
\(A=\frac{n+5}{n-2}=1+\frac{7}{n-2}\)
Để \(1+\frac{7}{n-2}\in Z\Leftrightarrow\frac{7}{n-2}\in Z\)
=> n - 2 thuộc Ư(7) = { - 7; - 1; 1; 7 }
=> n = { - 5; 1; 3; 9 }
Vậy với n = { - 5; 1; 3; 9 } thì \(A=\frac{n+5}{n-2}\) thuộc Z