Ta có: \(A=\frac{2n-1}{n+3}=2-\frac{7}{n+3}\)
Để A nguyên thì \(7\)\(⋮\)\(n+3\)
\(\Rightarrow\)\(n+3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)\(n\)\(=\left\{-10;-4;-2;4\right\}\)
\(A=\frac{2n-1}{n+3}\) có giá trị nguyên
\(\Leftrightarrow2n-1⋮n+3\)
\(\Rightarrow\left(2n+6\right)-6-1⋮n+3\)
\(\Rightarrow2\left(n+3\right)-7⋮n+3\)
có \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow-7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-7\right)\)
\(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow n+3\in\left\{-1;-7;1;7\right\}\)
\(\Rightarrow n\in\left\{-4;-10;-2;4\right\}\)
\(A=\frac{2n-1}{n+3}\)
\(A=\frac{2\left(n+3\right)-7}{n+3}\)
\(A=2-\frac{7}{n+3}\)
để \(A\in Z\)thì \(\frac{7}{n+3}\in Z\)
\(\Leftrightarrow n+3\inƯ\left(7\right)\)
\(\Leftrightarrow n+3\in\left\{\pm1;\pm7\right\}\)
+ \(n+3=-1\Leftrightarrow n=-4\)
+ \(n+3=1\Leftrightarrow n=-2\)
+ \(n+3=7\Leftrightarrow n=4\)
+ \(n+3=-7\Leftrightarrow n=-10\)
vậy \(x\in\left\{\pm4;-2;-10\right\}\)
Để A có giá trị nguyên
\(\Rightarrow2n-1\) chia hết cho \(n+3\)
\(\Rightarrow n+3+n+3+7\) chia hết cho \(n+3\)
\(\Rightarrow\) 7 chia hết cho n + 3
\(\Rightarrow n+3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n+3\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n\in\left\{-2;4;-4;-10\right\}\)
Để A là số nguyên thì 2n - 1 ⋮ n + 3
<=> 2(n + 3) - 7 ⋮ n + 3
<=> 7 ⋮ n + 3 (vì 2(n + 3) ⋮ n + 3)
<=> n + 3 ∈ Ư(7) = {1; -1; 7; -7}
n + 3 = 1 => n = -2
n + 3 = -1 => n = -4
n + 3 = 7 => n = 4
n + 3 = -7 => n = -10
Vậy n ∈ {-2; -4; 4; -10}