Cho parabol (P): y = x2 và đường thẳng d: y = mx + m +1 (với m là tham số) trong mặt phẳng tọa độ Oxy.
a) Với giá trị nào của m thì d tiếp xúc với (P)? Khi đó hãy tìm tọa độ tiếp điểm.
b) Tìm các giá trị của m để d cắt (P) tại hai điểm phân biệt nằm khác phía đối với trục tung, có hoành độ x1, x2 thỏa mãn điều kiện: 2x1 - 3x2 = 5.
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)