Xét PTHĐGĐ của (P) và (d):
\(x^2-2x=mx+2\)
\(\Leftrightarrow x^2-\left(2+m\right)x-2=0\)
Để .. cắt tại 2 điểm, nghĩa là PT phải có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\Leftrightarrow\left(2+m\right)^2-4.\left(-2\right)>0\Leftrightarrow m^2+4m+12>0\left(lđ\right)\)
\(\Leftrightarrow\left|\frac{2+m-\sqrt{m^2+4m+12}}{2}\right|=2\left|\frac{2+m+\sqrt{m^2+4m+12}}{2}\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2+m-\sqrt{m^2+4m+12}=2\left(2+m+\sqrt{m^2+4m+12}\right)\\2+m-\sqrt{m^2+4m+12}=-2\left(2+m+\sqrt{m^2+4m+12}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{m^2+4m+12}+m+2=0\\\sqrt{m^2+4m+12}+3m+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9m^2+12m+36=m^2+4m+4\\m^2+4m+12=9m^2+36m+36\end{matrix}\right.\)
Tự giải nốt và kl nha =))