\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p
TH1: p=2 => q=3 thỏa mãn
TH2: p>2
mà p nguyên tố lẻ => p-1 chia hết cho 2
và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí
\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p
TH1: p=2 => q=3 thỏa mãn
TH2: p>2
mà p nguyên tố lẻ => p-1 chia hết cho 2
và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí
Cho p,q là 2 số nguyên tố thỏa mãn \(p^2-q^2=p-3q+2\)
Chứng minh rằng p2+q2 là số nguyên tố
giả sử p và q là hai số nguyên tố thỏa mãn đẳng thức p(p-1)=q(q2-1) (*)
a) cmr tồn tại số nguyên k để p-1=kq; q2-1=kp
b) tìm tất cả các số nguyên tố p, q thỏa mãn pt (*)
ai làm đc thì trình bày nha :D
Cho p và \(p^2+2\) là các số nguyên tố . Cmr \(p^3+p^2+1\) cũng là số nguyên tố
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
Cho a,b,c là các số nguyên dương thỏa mãn điều kiện \(\sqrt{a}+\sqrt{b}=\sqrt{c}\). CMR nếu a,b là 2 số nguyên tố cùng nhau thì a,b,c đều là các số chính phương
Cho x,y,z là na số nguyên dương nguyên tố cùng nhau và thỏa mãn: \(\left(x-z\right)\left(y-z\right)=z^2\) .CMR: xyz là số chính phương
Cho a, b, c là 3 số nguyên dương nguyên tố cùng nhau và thỏa mãn \(\left(a-c\right)\left(b-c\right)=c^2\)
CMR: Tích abc là số chính phương
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời 2 điều kiện sau
\(\frac{x-y\sqrt{2011}}{y-z\sqrt{2011}}\)là số hữu tỉ và \(^{x^2+y^2+z^2}\)là số nguyên tố
Mọi người giúp em với , em cần gấp =() :
Câu 1 : Tìm số tự nhiên \(n\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố
Câu 2 : Chứng minh rằng không tồn tại các bộ 3 số nguyên \(\left(x;y;z\right)\)thỏa mãn đẳng thức : \(x^4+y^4=7z^4+5\)
Câu 3 : Chứng minh rằng \(\left(a,5\right)=1\)thì \(a^{8n}+3a^{4n}-4\)chia hết cho 100.
Câu 4 : Có hay không số nguyên tố \(p\) thỏa mãn \(8p-1;8p+1\)cũng là số nguyên tố ? Giải thích ?
Câu 5 : Tìm \(n\)nguyên sao cho \(s=n^4+10n^3+40n^2+78n+63\)là số chính phương
Câu 6 : Tìm tất cả số tự nhiên \(n\)để \(n^3-n^2-7n+10\)là số nguyên tố .