Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kudo Shinichi

cho P và P+4 là các số nguyên tố biết P lớn hơn 3 chứng minh rằng P+8 là hợp số

 

Zeref Dragneel
25 tháng 11 2015 lúc 20:31

:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1.

Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Thanh Hiền
25 tháng 11 2015 lúc 20:32

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 
Vậy chỉ có 3 là thỏa mãn yêu cầu


Các câu hỏi tương tự
Nguyễn Khánh Linh
Xem chi tiết
Ruby Sweety
Xem chi tiết
Tạ Kim Chi
Xem chi tiết
Ngô Quốc Anh
Xem chi tiết
Trần Thị Khánh Linh
Xem chi tiết
nguyễn thu hiền
Xem chi tiết
Quân Tạ Minh
Xem chi tiết
Nguyễn Trúc Phương
Xem chi tiết
Trang Linh
Xem chi tiết