bài 4 cmr A= p8n+3p4n-4 chia hết cho 5 biết p và 5 là 2 số nguyên tố cùng nhau và p là số nguyên
bài 5 cho p và 2p+1 là 2 số nguyên tố p lớn hơn 3 chứng minh 4p+1 là hợp số
Cmr p và 8(p^2) +1 là số nguyên tố khi và chỉ khi p=3
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
Cho a, b, c là 3 số nguyên dương nguyên tố cùng nhau và thỏa mãn \(\left(a-c\right)\left(b-c\right)=c^2\)
CMR: Tích abc là số chính phương
Cho p là số nguyên tố; p\(\ge5\)CMR nếu 2p+1 là số nguyên tố thì 2p2 là hợp số
Cho \(n\ge5\)thỏa mãn n và 2n + 1 là số nguyên tố. CMR 4n + 1 là hợp số
Cho x,y,z là na số nguyên dương nguyên tố cùng nhau và thỏa mãn: \(\left(x-z\right)\left(y-z\right)=z^2\) .CMR: xyz là số chính phương
Cho n là số tự nhiên. Chứng minh n + 3 và n là hai số nguyên tố cùng nhau với n >4
Cho p và \(p^2+2\) là các số nguyên tố . Cmr \(p^3+p^2+1\) cũng là số nguyên tố