* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa * Xét: p # 3 Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 Vậy: (8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 => 8p+1 là hợp số ---------- Cách khác: phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) xét 3 số nguyên liên tiếp: p-1, p, p+1 p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) => p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3 tk mình nhé
cho mik hỏi z p có mấy dạng, là những dạng nào