Với \(p=3\): \(8p-1=23\)là số nguyên tố thỏa mãn, \(8p+1=25\)chia hết cho \(5\), là hợp số.
Với \(p\ne3\):
Do \(p\)là số nguyên tố nên \(p⋮̸3\Rightarrow8p⋮̸3\).
Có \(8p-1,8p,8p+1\)là ba số tự nhiên liên tiếp nên có ít nhất một số chia hết cho \(3\)mà \(8p-1\)là só nguyên tố nên không chia hết cho \(3\)(do \(8p-1\ne3\)), \(8p⋮̸3\)suy ra \(8p+1\)chia hết cho \(3\).
Mà dễ thấy \(8p+1>3\)do đó \(8p+1\)là hợp số.