Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen nam

Cho p và 10p+1 là các số nguyên tố lớn hơn 3. Chứng minh rằng 5p+1 chia hết cho 6.

An Nguyễn
7 tháng 3 2015 lúc 18:08

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6

 

Hà Trọng Hoàng
22 tháng 3 2016 lúc 19:34

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 

Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

Lăng Tiểu Hân
11 tháng 1 2019 lúc 20:42

gt là vậy mấy bạn


Các câu hỏi tương tự
VÕ THỊ HƯƠNG
Xem chi tiết
Trankieuphuong
Xem chi tiết
Nguyễn Vân Phương Thùy
Xem chi tiết
Trần Thanh Ngọc
Xem chi tiết
Biện Bạch Hiền
Xem chi tiết
Hà Thu Trang
Xem chi tiết
NGUYEN DIEU LINH
Xem chi tiết
nguyễn bảo ngọc
Xem chi tiết
Châu Anh Đăng
Xem chi tiết