Ta có :
Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)
Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:
\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)
\(=9k^2+1+2.3k-3k-1+12k+4-4\)
\(=9k^2+6k-3k+12k+1-1+4-4\)
\(=9k^2+15k\)
Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2
:D