\(P>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}+\frac{1}{101}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}+\frac{1}{101}=\frac{1}{2}-\frac{1}{101}+\frac{1}{101}=\frac{1}{2}\)
\(P>\frac{99}{202}\)
\(P>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}+\frac{1}{101}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}+\frac{1}{101}=\frac{1}{2}-\frac{1}{101}+\frac{1}{101}=\frac{1}{2}\)
\(P>\frac{99}{202}\)
CMR:
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..+\frac{99}{100}\)
b, \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Giải nhanh giùm mình nhé!!!!!!!!!!!!!!
1/ CMR: -a + 3 và 3 - a là 2 số đối nhau
2/ Cho C =\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}\). Chứng tỏ rằng C<2
3/ CMR:
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\)
b) \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}<\frac{1}{2}\)
a) CMR: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{3}{4}\)
b) CMR: \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
CMR:
a, \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b, \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
CMR
a)\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
CMR: \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}<1\frac{3}{4}\)
CMR:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
CMR:
a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
1.Tính tổng
\(S=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)
2.Tìm x
\(5^x+5^{x+2}=650\)
3.CMR
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
4. Cho \(A=\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2010}+\frac{1}{2011}\)
So sánh A và B