BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI 2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
Cho (O;R) đường kính AB, vẽ tiếp tuyến Ax và By . Trên (O) lấy điểm M, qua M vẽ tiếp tuyến (O) cắt Ax, By tại C và D
a) Chứng minh tứ giác AOMC nội tiếp và COD = 90
b) Tia BM cắt Ax tại N. Chứng minh C là trung điểm AN
c) Chứng minh AB là tiếp tuyến đường tròn đường kính CD
d) Vẽ MH vuông AB , gọi I là trung điểm MH. Chứng minh 3 điểm A, I, C thẳng hàng. Giúp mình c d với
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB
cho nữa đường tròn đường kính AB. trên cùng 1 mặt phẳng bờ AB vẽ 2 tiếp tuyến Ax và By. gọi M là một điểm bất kì thuộc nữa đường tròn tâm O, tiếp tuyến tại M cắt Ax tại C, cắt By tại D
a, Cmr CD=AC+BD
b, tính góc COD
c,Cmr AB là tiếp tuyến của đường tròn đường kính CD
d, tìm giá trị của M để tứ giác ABCD có chu vi nhỏ nhất
Cho nửa đường tròn (O;R), đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn. Tiếp tuyến tại một điểm M trên nửa đường tròn cắt Ax tại C và By tại D. Chứng minh
a) CD = CA + DB và góc COD = \(90^0\)
b) AB là tiếp tuyến của đường tròn đường kính CD
c) Dọi N là giao điểm của AD và BC. Chứng minh MN vuông góc với AB
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax, By tại D và C. Chứng minh:
a, AD + BC = CD
b, C O D ^ = 90 0
c, AC.BD = O A 2
d, AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn (O;R) có AB là đường kính. Vẽ các tiếp tuyến Ax, By của nửa đường tròn (O;R). Trên nửa đường tròn lấy điểm M sao cho MA < MB. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt Ax tại C, cắt By tại D.
a/ Chứng minh CD = AC + BD
b/ Chứng minh góc COD= 90o và AC.BD=R2
c/ Đường thẳng BM cắt Ax tại N. Đường thẳng AM cắt ON tại E và cắt OC tại H. Đường thẳng NH cắt AB tại F. Gọi K là giao điểm của OC và EF. Chứng minh NA2=MN.NB và KE = KF
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tiếp tuyến Ax, By. Lấy M là điểm bất kì thuộc nửa đường tròn (M khác A và B). Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) tính số đo góc COD (900)
b) Chứng minh AB là tiếp tuyến của đường tròn có đường kính CD.
Cho nửa đường tròn (O) đường kính AB = 2R. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. M là điểm trên (O) sao cho tiếp tuyên tại M cắt Ax, By tại D và C. Đường thẳng AD cắt BC tại N
a, Chứng minh A, C, M, O cùng thuộc một đường tròn. Chỉ ra bán kính của đường tròn đó
b, Chứng minh OC và BM song song
c, Tìm vị trí điểm M sao cho SACDB nhỏ nhất
d, Chứng minh MN và AB vuông góc nhau