Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Trần Nhật Thanh

Cho (O;R) có dây cung cố định BC < 2R. Gọi A là điểm chuyển động trên cung lớn BC. Các tiếp tuyến với (O) tại B, C cắt nhau tại M. Đường thẳng qua M song song với AB cắt AC tại E. Đường thẳng qua M song song với AC cắt AB tại D. CMR: Đường thẳng DE luôn tiếp xúc với một đường tròn cố định

Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:50

Bạn vẽ hình ra nha,mình sẽ giải cho bạn

Nguyễn Tất Đạt
20 tháng 7 2019 lúc 10:28

A B C O M E D S H

Gọi S là trung điểm của đoạn OM, H là hình chiếu của S trên DE. Khi đó khoảng cách từ S đến DE là SH.

Ta sẽ chỉ ra SH = const, thật vậy: Do BM,CM là các tiếp tuyến tại B,C của (O) nên ^OBM = ^OCM (=900)

=> Tứ giác BOCM nội tiếp (OM). Ta cũng có: ^MEC = ^BAC (Vì ME // AB)

Theo tính chất góc tạo bởi tiếp tuyến và dây có ^BAC = ^MBC. Do đó ^MEC = ^MBC

=> Tứ giác MCEB nội tiếp. Tương tự, tứ giác MBDC nội tiếp

Từ đó sáu điểm B,D,O,E,C,M cùng thuộc đường tròn (OM) tâm là S => SD = SE = OM/2

Ta lại có OM2 = OC2 + CM2 = const (Vì O,C,M cố định) => SD = SE = const

Mặt khác ^DSE = 2^DME = 2^BAC = Sđ(BC = const => ^SDE = const => Sin^DSE = const

Hay \(\frac{SH}{SD}=const\). Mà SD không đổi nên SH không đổi => H cách S một khoảng không đổi

Ta thấy S cố định => (S;SH) cố định. Do DE vuông góc SH tại H nên DE luôn tiếp xúc với (S;SH) cố định (đpcm).


Các câu hỏi tương tự
hằng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
tran quoc anh
Xem chi tiết
Cao Thanh Bình
Xem chi tiết
Ko cần bít
Xem chi tiết
Ngọc Phạm
Xem chi tiết
tam nguyenduc
Xem chi tiết