Đề 1:
Câu 4.
a) Từ điểm M nằm ngoài đường tròn (O), vẽ các tiếp tuyến MA, MB đến đường tròn (O) ( với A, B là các tiếp điểm). C là điểm bất kì trên cung nhỏ AB của (O). Các tia AC và BC lần lượt cắt các đường thẳng MB, MA tại D và E. Chứng minh đường tròn ngoại tiếp các tam giác ACE, BCD, OCM đồng quy tại một điểm thứ 2 khác C
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC của (O;R), (BC là các tiếp điểm).
1) Chứng minh rằng bốn điểm A,B,O,C cùng thuộc một đường tròn;
2) Lấy điểm I trên đường tròn (O;R) sao cho tia OI nằm giữa hai tia OA và OB. Qua I vẽ đường thẳng tiếp xúc với đường tròn (O;R) cắt AB,AC lần lượt tại M và N. Chứng minh MB+NC=MN;
3) Qua O vẽ đường thẳng vuông góc với OA cắt AB,AC lần lượt tại P và Q. Chứng minh rằng PM.QN=\(\frac{PQ^2}{4}\)
Cho đường tròn tâm O và 1 điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp điểm MA, MB với đường tròn, Gọi C là 1 điểm trên cung AB của đường tròn tâm M bán kính MA, (cung AB nằm trong dường tròn (O)). Các tia AC,BC cắt dường tròn (O) tại P và Q. Chứng minh rằng PQ đi qua O
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh . góc AHB = góc AHC
b) Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. Chứng minh . ∆MKH vuông tại K.
Từ điểm M nằm ngoài đường tròn O . Vẽ tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) và cát tuyến MCD không đi qua O ( C nằm giẵ M và D ) với đường tròn O
a) C/m tứ giác MAOB nội tiếp
b)C/m MA2 =MC.MD
c) Đường thẳng MO cắt AB tại H và cắt O tại I và K ( I nằm giữa M và K ) . C/m CK là phân giác của DCH
Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N. a) Chứng minh: CDKO nội tiếp. b) Chứng minh MC2 =MA. MB. c) Chứng minh: DCN cân. d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn.
Cho điểm M nằm ngoài (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (tia MC nằm giữa tia MO và MA). Gọi H là giao điểm của OM và AB.
a/ Chứng minh tứ giác MAOB nội tiếp
b/ K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc 1 đường tròn. Suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt AB tại N. Chứng minh ND là tiếp tuyến của (O)
d/ Vẽ đường kính BE của đường tròn (O). Từ C vẽ đường thẳng song song với OM cắt các đường thẳng BE và ED lần lượt tại I và P. Chứng minh I là trung điểm CP.
Cho đường tròn ( O). Điểm M nằm ngoài đường tròn. Kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm)
a, Chứng minh OM vuông góc với AB
b, Gọi H là giao điểm của MO và AB. Kẻ đường thẳng MO cắt đường tròn ( O) lần lượt tại hai điểm P, Q ( P nằm giữa M và O). Chứng minh QH.AM=QM.AH
Cho đường tròn tâm O và 1 điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp điểm MA, MB với đường tròn, Gọi C là 1 điểm trên cung AB của đường tròn tâm M bán kính MA, (cung AB nằm trong dường tròn (O)). Các tia AC,BC cắt dường tròn (O) tại P và Q. Chứng minh rằng PQ đi qua O