1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH
Cho nửa đường tròn tâm O, đường kính AB=2R, tiếp tuyến Ax,By với nửa đường tròn tâm O ( Ax, By nằm cùng phía với nửa đường tròn đó). Tiếp tuyến tại M với đường tròn tâm O ( M khác A,B) cắt Ax, By lần lượt tại C, D.
a) Chứng minh: A,C,O,M thuộc 1 đường tròn ( mik làm được rồi)
b) Chứng minh: Góc COD = 90 độ, và AC.BD = R^2
c) Gọi N là giao điểm AD và BC. Tia MN cắt AB tại H. Chứng minh N là trung điểm của HM
d) Cho S tứ giác ABCD= 20 cm^2 , Ab = 5cm. Tính diện tích tam giác ANB
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AC>CB, C khác A và B. Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I, kẻ tiếp tuyến Ax của đường tròn (O;R), tia OI cắt Ax tại M. Gọi giao điểm BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC=KH
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
1) Cho đường tròn tâm O, bán kính R, đường kính AB. Điểm M thuộc (O) sao cho Am=R
a. Chứng minh tam giác AMB vuông. Tính MB theo R
b. Vẽ MN vuông góc AB (N thuộc đường tròn tâm O) . Tiếp tuyến tại M cắt đường thẳng AB tại I. Chứng minh góc MOI= góc NOI và IN là tiếp tuyến của (O)
c. Lấy điểm E thuộc cung nhỏ MN, vẽ tiếp tuyến tại E với (O) cắt IM, IN lần lượt tại C và F. Tính chu vi tam giác ICF theo R
Cho đường tròn (O ; R) đường kính AB. Vẽ dây AC sao cho AC = R. Gọi I là trung điểm của dây AC. OI cắt tiếp tuyến Ax tại M. Ax là tiếp tuyến của đường tròn (O)(O) tại A. Chứng minh rằng :
a) Góc ACB bằng 900 suy ra độ dài BC.
b) OM là phân giác góc COA.
c) MC là tiếp tuyến của đường tròn (O).
Giải giúp mình phần b. Xin cảm ơn!
Cho đường tròn tâm O bán kính R. Từ điểm C nằm ngoài đường tròn kẻ hai tiếp tuyến CA, CB và cát tuyến CMN với đường tròn (O) (A, B là hai tiếp điểm, M là điểm nằm giữa C và N). Gọi H là giao điểm của CO và AB
a) Chứng minh tứ giác AOBC nội tiếp
b) Tiếp tuyến tại M của đường tròn (O) cắt CA, CB theo thứ tự E, F. Đường thẳng vuông góc với CO tại O cắt CA, CB theo thứ tự tại P và Q. Chứng minh PE. QF có giá trị không đổi khi M thay đổi trên cung nhỏ AB
Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M.
1/ Chứng minh MA là tiếp tuyến của đường tròn (O).
2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.
cho đường tròn tâm o bán kính r. đường kính cd và 1 điểm m thuộc đường tròn o sao cho mc<md. kẻ mh vuông góc với cd tại h. chứng minh tam giác cmd vuông cho mc=6. md=8 tính mh. tiếp tuyến tại c của đường tròn o cắt dm tại e. goị f là trung điểm của ce. chứng minh fm là tiếp tuyến của đường tròn o. tiếp tuyến tại d của đường tròn o cắt fm tại p. chứng minh cf*dp=r^2. chứng minh cp vuông góc với oe