Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O)
a, Chứng minh bôn điểm A, P, M, O cùng thuộc một đường tròn
b, Chứng minh BM // OP
c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành
d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn tâm O, đường kính AB=2R, kẻ tiếp tuyến Ax của đường tròn. Từ 1 điểm M trên tia Ax, kẻ tiếp tuyến MC với tiếp điểm C thuộc (O). Qua O kẻ Oy vuông góc AB, Oy cắt BC tại N.
1) Chứng minh OMNB là hình bình hành
2) AN cắt OM tại K, MC cắt ON tại I, MN cắt OC tại E. Chứng minh tam giác MIO cân và 3 điểm K, I và E thẳng hàng
3) Gọi H là trực tâm của tam giác MAC. Chứng minh H thuộc đường tròn cố định khi M chuyển động trên Ax
4) Tìm vị trí điểm M để K thuộc đường tròn (O)
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tiai BC cắt Ax tại M, tia BC cắt Ax tại N
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB,BM cắt CH ở K. Chứng minh K là trung điểm của CH
Cho nửa đường tròn (O) đường kính AB, kẻ tiếp tuyến Ax. Qua C nằm trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M, tia Bx cắt Ax tại N.
a) Chứng minh OM vuông góc với AC
b) Chứng minh M là trung điểm của AN
c) Kẻ CH vuông góc AB, BM cắt CH ở K. Chứng minh K là trung điểm của CH
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T
Cho đường tròn ( O , R ) đường kính AB . Kẻ tiếp tuyến Ax với đường tròn . Lấy K thuộc Ax . Qua K kẻ tiếp tuyến KM tới đường tròn ( O ) . Đường thẳng d vuông góc với AB tại O , d cắt MB tại E .
a) CM : KAOM là tứ giác nội tiếp
b) OK cắt AM tại I , Chứng minh OI .OK không đổi khi K chuyển động trên Ax
c) CM : KAOE là HCN
d) Gọi H là trực tâm tam giác KMA . Chứng minh khi K chuyển động trên Ax thì H luôn thuộc 1 đường tròn cố định
Cho (O) là đường tròn tâm O đường kính AB. Qua A vẽ tiếp tuyến Ax của (O), trên tia Ax lấy điểm M (M khác A), từ M vẽ tiếp tuyến MC của (O) (C là tiếp điểm). Gọi H là giao điểm của OM và AC. Đường thẳng MB cắt (O) tại D (D nằm giữa M và B).
1) Chứng minh OM vuông góc với AC tại H
2) Chứng minh: MD.MB = MH.MO và góc MDH = góc MBA.
3) Gọi K là trung điểm đoạn thẳng BD. Tiếp tuyến tại B của (O) cắt tia OK tại E. Chứng minh ba điểm A,C,E thẳng hàng.
- Giúp tớ với nhé, mai tớ thi học kì rồi!! -