Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho tam giác ABc vuông tại A đường cao AH vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N
a Chứng minh rằng tứ giác AMHN là hình chữ nhật
b Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn
c Tìm điều kiện của tam giác ABC để M N có độ dài lớn nhất
Cho nửa đường tròn (O; R) đường kính AB. Điểm M thuộc nửa đường tròn. Gọi H là điểm chính giữa cung AM. Tia BH cắt AM tại I. Tiếp tuyến của nửa đường tròn tại A cắt BH tại K. Nối AH cắt BM tại E.
1. Chứng minh tam giác BAE là tam giác cân;
2. Chứng minh KH.KB=KE2;
3. Đường tròn tâm B, bán kính BA cắt AM tại N. Chứng minh tứ giác BIEN nội tiếp.
Cho đường tròn tâm O, đường kính AB = 2R. Đường trung trực của OA cắt (O) tại C, D và cắt OA tại E. Gọi K thuộc cung BC nhỏ của (O), AK cắt CE tại H.
1. Chứng minh: Tứ giác BEHK nội tiếp.
2. Chứng minh: AC2 = AH. AK và AC = R.
Cho đường tròn tâm O, đường kính AB = 2R. Đường trung trực của OA cắt (O) tại C, D và cắt OA tại E. Gọi K thuộc cung BC nhỏ của (O), AK cắt CE tại H.
1. Chứng minh: Tứ giác BEHK nội tiếp.
2. Chứng minh: AC2 = AH. AK và AC = R.
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho đường tròn (O:R) có hai đường kính AB và CD vuông góc với nhau. Lấy K điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Nối AC cắt HK tại I, tia BC cắt đường thẳng HK tại E, nối AE cắt đường tròn (O:R) tại F.
a. CMR các tứ giác AHIF, BHIC, AHCE, BHFE, EFIC là các tứ giác nội tiếp
b. CMR EC.EB = EF.EA
Giúp em câu c với ạ!
Cho đường tròn (O;R) đường kính BC. Lấy điểm A thuộc đường tròn O sao cho dây cung AB lớn hơn dây cung AC. Kẻ AH vuông góc với BC (H thuộc BC). Vẽ đường tròn tâm I đường kính AH cắt dây AB và AC lần lượt tại E và D.
a) chứng minh AEHD là hình chữ nhật
b) chứng minh tứ giác BEDC nội tiếp
c) đường tròn (O) cắt đường tròn (I) tại điểm F (khác A). đường thẳng AF cắt đường thẳng BC tại M. Chứng minh 3 điểm M, D, E thẳng hàng
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.