Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H.
1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này.
2) Chứng minh: MA.MB = MD.MH
3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng.
4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD.
Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn.
Bài IV (3,5 điểm):
Cho đường tròn (O; R), dây CD có trung điểm E. Trên tia đối của CD lấy điểm M. Kẻ tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng MO cắt AB tại H, cắt đường tròn tại I (I nằm giữa M và O).
a) Chứng minh: năm điểm M, A, O, E, B cùng thuộc một đường tròn.
b) Chứng minh: từ đó suy ra
c) Chứng minh: CI là phân giác của
d) Đường thẳng AB cắt OE tại K. Khi M di chuyển trên tia đối của tia CD thì AB luôn đi qua một điểm cố định.
Cho (O; R) , một đường thẳng d cắt đường tròn (O) tại C và D, lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M, Qua M vẽ tiếp tuyến MA, MB với đường tròn . Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng:
a) AB vuông góc với OM.
b) Tích OE . OM không đổi.
c) Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định.
Cho đường tròn (O) đường kính AB và điểm C thuộc (O) sao cho AC>BC.Qua O kẻ đường thẳng vuông góc với dây cung AC tại H. Tiếp tuyến tại A của đường tròn cắt tia OH tại D. Đoạn DB cắt đường tròn (O) tại E. Trên tia đối tia EA lấy điểm F sao cho E là trung điểm của AF. Từ F vẽ đường thẳng vuông góc với AD tại K. Đoạn KF cắt BC tại M, chứng minh MK=MF
Cho đường tròn (O) đường kính AB và điểm C thuộc (O) sao cho AC>BC.Qua O kẻ đường thẳng vuông góc với dây cung AC tại H. Tiếp tuyến tại A của đường tròn cắt tia OH tại D. Đoạn DB cắt đường tròn (O) tại E. Trên tia đối tia EA lấy điểm F sao cho E là trung điểm của AF. Từ F vẽ đường thẳng vuông góc với AD tại K. Đoạn KF cắt BC tại M, chứng minh MK=MF
Cho đường tròn (O) đường kính AB. Lấy điểm M thuộc (O) sao cho MA < MB. Vẽ dây MN vuông góc với AB tại H. Đường thẳng AN cắt BM tại C. Đường thẳng qua C vuông góc với AB tại K và cắt BN tại D
a, Chứng minh A, M, C, K cùng thuộc đường tròn
b, Chứng minh BK là tia phân giác của góc MBN
c, Chứng minh ∆KMC cân và KM là tiếp tuyến của (O)
d, Tìm vị trí của M trên (O) để tứ giác MNKC trở thành hình thoi
Cho đường tròn (O) bán kính BC. Lấy điểm A thuộc đường tròn sao cho AB>AC . Trên đoạn OB lấy điểm M(M khác O và khác B) . Đường thẳng vuông góc với BC tại M cắt AB tại H. Tai CH cắt đường tròn (O) tại D( D khác C) tia BD cắt đường MH tại I a CM: A C M H cùng thuộc một đường tròn b Tia AB là phân giác góc DMA c ND.BI=BH. BA và 3 điểm C A I thẳng hàng
Cho (O;R) và một đường thẳng d cố định cắt đường tròn (O) tại C va D, trên đường thẳng lấy điểm M sao cho D nằm giữa M và C. Qua điểm M vẽ các tiếp tuyến MA, MB với đường tròn (A,B là các tiếp điểm). Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng :
a. Bốn điểm O,B,M,H cùng nằm trên một đường tròn
b. ME ⊥ AB
c. Tích OE.Om không đổi và đường thẳng AB luôn đi qua điểm cố định khi điểm M di động trên đường thẳng d