Cho nửa đường tròn tâm O có đường kính AB . Gọi Ax , By là hai tiếp tuyến vẽ từ A đến B ( Ax , By và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) . Qua điểm thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến thứ ba , tiếp tuyến này cắt Ax và By lần lượt tại điểm C và D 1. Chứng minh CD=AC+BD.
2. Gọi N là giao điểm của AD và BC chứng minh MN song song với AC.
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax,By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M,I,H thẳng hàng.
b) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc với AB ở K. Chứng minh SAMB= AK.KB
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng: MN ⊥ AB
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng: MN = NH
Cho nửa đường tròn ( O ; AB/2 ) . Từ A , B kẻ hai tiếp tuyến Ax , By ( Ax , By cùng nằm trên một nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn ( O ; AB / 2 ) . Qua một điểm M thuộc nửa đường tròn này , kẻ tiếp tuyến thứ ba với nửa đường tròn ( O ; AB/2 ) cắt tiếp tuyến Ax , By lần lượt tại C và D . Gọi E và F lần lượt là giao điểm của các đường thẳng AM và OC ; MB và OD
1. Chứng minh : CD = AC + BD
2 . Chứng minh EF // AB
3. Gọi N là giao điểm của hai đường thẳng AD và BC
Chứng minh MN vuông góc AB
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB
Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phătng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Tính MH biết AH = 3cm, HB = 5cm.
b) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M, I, H thẳng hàng.
c) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc AB ở K. Chứng minh diện tích tam giác AMB = AK.KB
Giúp mình với nhé
Cho nửa đường tròn tâm O , đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By cùng thuộc nửa đường tròn có bờ là AB). Lấy một điểm M trên cung AB, vẽ tiếp tuyến tại M với đường tròn cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD với BC, H là giao điểm của MN và AB. Chứng minh rằng:
a) MN vuông góc với AB
b) MN=NH
Cho nửa đường tròn tâm O đường kính AB. M là một điểm tùy ý trên cung tròn ( M khác A, B) . Kẻ tiếp tuyến Ax , By của (O) ( Ax, By nằm cùng phía với nửa đườg tròn (O) bờ là đườg thẳng AB ). Qua M kẻ tiếp tuyến thứ ba vs đườg tròn cắt Ax , By lần lượt tại C, D. AD cắt BC tại N. Chứg minh MN vuông góc AB tại H và N là trung điểm MH