Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và góc COD vuông
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phẳng có bờ là đường thẳng vẽ các tiếp tuyến Ax , By với (o) ( A,B là các tiếp điểm). Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến t3 cắt Ax , By lần lượt tại C và D. gọi N là giao điểm AD và BC. cM
a) CD=CA+DB
b) MN vuông góc vs AB
cho nửa đường tròn tâm O bán kính R,đường kính AB từ A và B vẽ 2 tiếp tuyến Ax và By,1 điểm M di động trên nửa đường tròn này vẽ tiếp tuyến tại M cắt Ax và By lần lượt tại C và D.
a)tính góc COD
b)xác định vị trí của M trên nửa đường tròn O sao cho AB+BD nhỏ nhất
giúp mình với
Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng
phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với
đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh: OC AM và AM // OD;
b) Chứng minh: AC.BD = R2
c) Chứng minh: AB là tiếp tuyến đường tròn đường kính CD;
d) Gọi K là giao điểm của AD và BC. Chứng minh MK AB;
e) Tìm vị trí điểm M sao cho diện tích tứ giác ACDB nhỏ nhất.
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
Tính OC theo R?
Cho nửa (O). Đường kính AB. Trên nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By với (O). Lấy C thuộc Ax. Vẽ OD vuông góc với OC (D thuộc By):
- Cho bán kính (O) là R. Góc ACD = 120 độ. Tính AC, BD, CD theo R.
- Xác định vị trí của C để AC + BD đạt giá trị nhỏ nhất.
Cho nửa đường tròn tâm O đường kính AB. Trên tiếp tuyến Ax của (O) lấy C Trên tiếp tuyến By của (O) lấy D sao cho AC+BD=CD
a) Chứng minh rằng CD tiếp xúc với nửa đường tròn (O) tại E
Cho nửa đường tròn (O;R) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ các tia tiếp tuyến Ax, By. Lấy m thuộc nửa đường tròn ấy sao cho M# A và B. Tiếp tuyến với nửa đg tròn tại M cắt Ax và By lần lượt tại C và D.
a) Chứng minh rằng DC=AC+BD
b) chứng minh AB là tiếp tuyến của (I) đường kính CD
c) CMR tích AC.BD không đổi khi M di động trên nửa đg tròn
d) tìm vị trí của C trên Ax và D trên By để chu vi hình thang ABDC =14cm biết AB = 4cm
cho nữa đường tròn tâm O bán R đường kính AB=2R ax by là các tia vuông góc AB. qua M thay đổi trên nửa đường tròn kẻ tiếp tuyến vuông góc với nữa đường tròn lần lượt cắt Ax, By tai C và D
a) chứng minh:A , C, M, O thuộc một đường tròn