Cho nửa đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn sao cho AB<AC . H là hình chiếu của A trên BC . Đường trtròn tâm H bán kính HA cắt AB tại D(D≠A) và cất AC tại E (E≠A) . Gọi K là hình chiếu của H lên AC và I là giao điểm của HK và AO . CMR
a) EI//BC
b) BECD nội tiếp
c) Khi A thay đổi trên (O) tâm của đt ngoại tiếp tứ giác BECD thuộc một đường tròn cố định
Cho đương thẳng d cố định , A là 1 điểm cố định nằm ngoài đường thẳng d . Trên d lấy 2 điểm P và Q sao cho góc QAP vuông . Gọi B là hình chiếu của A trên đường thẳng d . Đường tròn (O;R) đường kính AB cắt AP,AQ lần lượt tại N,M
a, Cmr 3 điểm M,O,N thẳng hàng
b, 4 điểm M,N,P,Q cùng thuộc 1 đường tròn
c, Gọi E là trung điểm của BQ. Đường thẳng vuông góc với OE tại O cắt PQ tại F . Cm F lag trung điểm của BP
d, Cm ME//NF
Cho nửa đường tròn (O;R) đường kính BC. Gọi A là điểm di động trên nửa đường tròn. Kẻ AD vuông góc BC sao cho đường tròn đường kính AD cắt AB,AC và (O) tại E,F,G. Đường thẳng AG cắt BC tại H.
1) Tính \(\frac{AD^3}{BE.CF}\)theo R ? Chứng minh H,E,F thẳng hàng ?
2) Chứng minh: FG.CH + GH.CF = CG.HF ?
3) Trên BC lấy M cố định. Lấy N,P lần lượt là tâm ngoại tiếp các tam giác MAB,MAC. Xác định vị trí điểm A để SMNP Min ?
Cho điểm M nằm trên nửa đường tròn tâm O , đường kính AB=2R ( M không trùng với A và B). Trên nửa mặt phẳng chứa nửa đường tròn có bờ là AB, kẻ tia vuông góc với AB. Đường thẳng BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tâm O tại E, cắt IB tại F; đường thẳng BE cắt AI tại H, cắt AM tại K
a, Cm F,E, K,M cùng nằm trên 1 đường tròn
b, Tứ giác AHFK là hình gì? Vì sao?
c, CM đường tahwngr HF luôn tiếp xúc với một đường tròn cố định khi điểm M di chuyển trên đường tròn tâm O.
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho đường thẳng d và một điểm A cố định nằm ngoài đường thằng d, H là hình chiếu vuông góc của A xuống d. Hai điểm B,C thay đổi trên d sao cho góc BAC vuông. E,F lần lượt là hình chiếu vuồn góc của H xuống AB,AC. J,K lần lượt là hình chiếu vuông góc của F lên EC,BC. Chứng minh rằng:a, Bốn điểm B,E,F,C cùng thuộc đường tròn O.b,Ba điểm A,J,K thẳng hàng.c, Đường tròn O luôn đi qua 2 điểm cố định.
Cho e hỏi câu c ạ.
Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C,D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng:
1) F là trung điểm của EH
2) Hai đường thẳng DC và DI đối xứng nhau qua đường thẳng DN.
Giúp mình với, cảm ơn mn nhiều <3
Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.