Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh tú Trần

Cho nửa đường tròn (O;R), đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn. Tiếp tuyến tại một điểm M trên nửa đường tròn cắt Ax tại C và By tại D. Chứng minh

a) CD = CA + DB và góc COD = \(90^0\)

b) AB là tiếp tuyến của đường tròn đường kính CD

c) Dọi N là giao điểm của AD và BC. Chứng minh MN vuông góc với AB 

Đỗ Hoàng Diệp Chi
3 tháng 10 2021 lúc 8:54

bạn god rick giải dài nhưng chưa chắc là đúng

Khách vãng lai đã xóa

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thanh Phong
Xem chi tiết
nguyen van vu
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Truc quynh  Tran
Xem chi tiết
Nguyễn Thanh Thanh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
NGUYỄN THÙY LINH
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết