Cho nửa đường tròn (O) đường kính AB kẻ tiếp tuyến Bx với nửa đường tròn, gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA. D là một điểm tùy ý trên cung CD (D khác C và B) Các tia AC, AD cắt tia Bx theo thứ tự E và F a, CM tam giác ABE vuông cân b, FB^2 = FD.FA c, CM AD.AF= AC.AE Giúp em với ạ. Cảm ơn ạ^^
Cho nửa đường tròn (O) đường kính AB, trên nửa đường tròn lấy điểm C (C không trùng với A, B). Gọi H là hình chiếu của C trên đường thẳng AB. Trên cung CB lấy điểm D (D khác C, B), Hai đường thẳng AD và CH cắt nhau tại E. . Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B. Đường tròn (O’) cắt CB tại F khác B.
Chọn khẳng định sai ?
A. Tứ giác BDEH nội tiếp
B. A C 2 = AE.AD
C. EF // AB.
D. Có 2 phương án sai .
Cho nửa đường tròn (O) đường kính AB kẻ tiếp tuyến Bx với nửa đường tròn, gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA. D là một điểm tùy ý trên cung CD (D khác C và B) Các tia AC, AD cẳ tia Bx theo thứ tự E và F a, CM tam giác ABE vuông cân b, FB^2 = FD.FA c, CM AD.AF= AC.AE Giúp mình với. Cảm ơn ạ^^
Cho nửa đường tròn tâm O đường kính AB. Trên tiếp tuyến Ax của (O) lấy C Trên tiếp tuyến By của (O) lấy D sao cho AC+BD=CD
a) Chứng minh rằng CD tiếp xúc với nửa đường tròn (O) tại E
Trên đường tròn tâm (O) đường kính AB=2R, lấy điểm C, trên tia dối của tia CA lấy điểm D sao cho CB=CD=R. Đường trung trực của BD cắt nửa đường tròn (O) tại điểm thứ hai là E. Gọi F là điểm đối xứng của (O) qua AC. Chứng minh rằng ba điểm D,E,F thẳng hàng
Trên đường tròn tâm (O) đường kính AB=2R, lấy điểm C, trên tia dối của tia CA lấy điểm D sao cho CB=CD=R. Đường trung trực của BD cắt nửa đường tròn (O) tại điểm thứ hai là E. Gọi F là điểm đối xứng của (O) qua AC. Chứng minh rằng ba điểm D,E,F thẳng hàng
Cho nửa đường tròn đường kính AB =2R . Lấy điểm C trên nửa (O) với CA > CB Kẻ CH vuông góc AB Kẻ đường tròn tâm K đường kính CH cắt AC, BC lần lượt tại D và E , nó cắt nửa (O) tại F CMR a, CH = DE b, CA . CD = CB CE và tứ giác ABED nội tiếp
Cho nửa đường tròn tâm (o), đường kính AB=6. Trên đoạn OB lấy điểm H sao cho HB=2HO. Qua H kẻ đường thẳng vuông góc với AB cắt nửa đường tròn tại điểm C. Vẽ đường tâm (I) đường kính OA cắt AC tại D. Gọi E là giao điểm của OC và BD.
a) CM: AD=CD
b) CM: 4 điểm O,D,C,H cùng nằm trên 1 đường tròn
c) CM: BD là tiếp tuyến của đường tròn (I)
GIÚP MÌNH VS
cho nửa đường tròn ( O;R) đường kính AB. M là điểm trên nửa đường tròn. Tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D. Chứng minh:
a, CD= AC+ BD và tam giác COD vuông
b, AC.BD = R^2
c, AB là tiếp tuyến của đường tròn đường kính CD