cho nửa đường tròn (O) đường kính AB, tiếp tuyến Ax. Gọi C là một điểm trên nửa đường tròn. Tia phân giác của góc CAx cắt nửa đường tròn ở E, AE và BC cắt nhau ở K.
a. Tam giác ABK là tam giác gì? Vì sao?
b. I là giao điểm của AC và BE. Chứng minh: IK // Ax
c. Chứng minh: OE // BC
Cho Nửa đường tròn (O) đường kính AB , Tiếp tuyến Ax . Gọi C là 1 điểm nằm trên nửa đường tròn. Tia phân giác góc CAx cắt đường tròn ở E ; AC và BC cắt nhau ở K . I là giao điểm của AC và BE . Chứng minh OE//BC
Cho nửa (O) đường kính AB , tiếp tuyến Ax, còn C là 1 điểm trên mỗi đường tròn. Tia phân giác của góc CAx cắt nửa (O) ở E , AE cắt BC ở K
a, Tam giác ABK là tam giác gì? Vì sao?
b, Gọi I là giao điểm của AK và BE. Chứng minh KI song song Ax
c, Chứng minh OE song song BC
Cho nửa đường tròn đường kính AB, C là một điểm nằm trên nửa đường tròn. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ tiếp tuyến Bx. Tia phân giác của góc CBx cắt nửa đường tròn tại I và cắt AC tại E.
a) C/m: AB = AE
b) Gọi H là giao điểm của BC và AI. C/m: EH // Bx
c) Gọi K là giao điểm của AI và Bx. Tứ giác EHBK là hình gì?
Cho nửa đường tròn (O) đường kính AB và một điểm C nằm trên nửa đường tròn. Gọi D là một điểm trên đường kính AB, qua D kẻ đường vuông góc với AB cắt BC ở F, cắt AC ở E. Tiếp tuyến của nửa đường tròn ở C cắt EF ở I. Chứng minh:
a) I là trung điểm của EF
b) Đường thẳng OC là tiếp tuyến đường tròn ngoại tiếp tam giác ECF
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB
Cho nửa đường tròn (O) đường kính AB, dây AC, tiếp tuyến Ax. Phân giác của \(\widehat{CAx}\) cắt BC ở D, cắt nửa đường tròn ở E. Gọi H là giao điểm của AC với BE. Chứng minh:
a) \(OE\perp AC\)
b) E là trung điểm của AD
c) \(DH\perp AB\)
Cho nửa đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Chứng minh:
a, I là trung điểm của CE
b, Đường thẳng OC là tiếp tuyến của đường tròn ngoại tiếp tam giác ECE
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.