\(2^{3n-1}=8^{n-1}.4\equiv1^{n-1}.4\equiv4\left(\text{mod 7}\right)\left(\text{vì: n\inℕ^∗}\right)\text{ chia 7 dư 4};2^{3n+1}=8^n.2\equiv1^n.2\equiv2\left(\text{mod 7}\right)\)
chia 7 dư 2
\(\Rightarrow2^{3n+1}+2^{3n-1}+1\text{ chia hết cho 7 và lớn hơn 7 nên là hợp số}\)