Cho biểu thức sau: \(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+.....+\frac{2015}{5^{2015}}+\frac{2016}{5^{2016}}\)
Chứng minh 1/4 < P< 1/3
Cho M=\(\frac{1}{4}-\frac{2}{4^2}+\frac{3}{4^3}-\frac{4}{4^4}+...+\frac{2015}{4^{2015}}-\frac{2016}{4^{2016}}\).Chứng minh M<\(\frac{4}{25}\)
Cho \(E=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\) . Chứng minh rằng \(E< \frac{3}{16}\)
Bài cuối đề thi học kỳ 2 môn toán trường mình đó , giải đi mk tk cho.
Cho E = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\)
Chứng minh rằng :E < \(\frac{3}{16}\)
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}< 1\) 1
Chứng minh rằng :
\(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
Giúp vs ak
Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........+\frac{1}{2016}\) ( có 2015 số hạng. CHứng minh rằng A >\(\frac{21}{11}\)
Cho a1,a2,a3,.....,a,2015 (a thuộc N)
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+....+\frac{1}{a_{2015}}=\frac{2016}{2}\)
Chứng minh rằng trong 2015 a có ít nhất 2 số bằng nhau.